

Made-to-measure unit-1 on-demand manufacturing of physical and digital apparel

02-04 November 2022, Telecom SudParis, Paris, France

Monika Januszkiewicz

Estraigr

Straigr.ai GmbH Düsseldorf, Germany

WORKSHOP

Carol McDonald

Sydney Otten

Gneiss Concept Washougal, WA, USA

*E*straigr

Straigr.ai GmbH Düsseldorf, Germany

Why should I participate?

The workshop will guide you in creating a pipeline for unit-1 manufacturing of two unisex products.

Development stages

Unit 1 refers to the same garment, yet different for each customer for optimum fit.

Our Motivation

We want to establish a dialogue between retail companies that use data and manufacturers that supply various information on digital avatars and materials. In doing so, we want to:

Propose a framework for scalable, modular unit-1 manufacturing to produce made-to-measure apparel. Synthesize and identify research and technology gaps that inhibit the progress of unit-1 manufacturing.

Provide a theoretical basis for experimental validation to evaluate the performance of the proposed solutions.

Interoperability

The ability of two or more software or hardware components to cooperate despite differences in language, interface, execution platform, blockchain and distributed ledger.

Stage 01

Data capture and processing

From raw scan mesh to animation ready avatar for virtual fit and size applications.

© PHIBER, Düsseldorf, 2022

WORKSHOP

Modules

File Formats

Metadata

Privacy Customer order and scan

© PHIBER, Düsseldorf, 2022

WORKSHOP

Raw legacy data from **3D body scan**

Goal	To extract anthropometrics with the surface geometry and texture.
Input	 Scan methods Depth algorithms The x-, y-, and z-axes in 3D body scan
Demand	 A raw scan in a common, non-proprietary format Ability to combine scans

Output	 Raw mesh, consisting of the point cloud, topographic
	surface and depth maps to determine anthropometrics
	and body shape

WORKSHOP

Missing topology between points, noise, and no continuous surface representation – especially in the crotch, head, below the chin, wrists, armscye (axilla) and feet areas.

Photo Raw point cloud file

rics

Geometric correction of surface

Goal	Watertight scan with closed holes and no floating noise.
Input	• Raw mesh
	Example: Fit3D 50K.obj poly.file
Demand	 Mesh templates from population datasets Tests to automatically identify potential errors in datasets De-identify the person from the scan in the workflow
Output	 The mesh topology output is watertight and connect to adjacent surfaces, and the volume is fully enclosed

WORKSHOP

Mesh retopology

Goal Reduce the polygon count to improve 3D performance and structure the polygon edges for better deformation.

Input
 Watertight avatar with an outline of what is real and what is synthetically generated

Demand	 Smooth small data points, inexact surfaces and properties related to "moon-like" surfaces for the skin Conver triangles to quads in mesh structure and layor Reduce the density via the normal map
Output	 Mesh that preserves the silhouette with edge flow

STAGE 01: DATA CAPTURE & PROCESSING

WORKSHOP

4

Texture (UV Maps & Normals)

Goal Wrap a 2D image on a 3D object and reconstruct mesh normals and UV coordinates.

Input • Retopologized avatar

Demand	 Organise UV islands to avoid surface gaps and create
	"texture seams"Set normals to determine a surface's orientation towa
	a light to avoid irregularities in the surface
Output	 Optimized mesh with a normal map texture

STAGE 01: DATA CAPTURE & PROCESSING

WORKSHOP

te

vard

Photo Textured mesh

5

Rig & Animation (timing of implementation)

Goal	Additional step in the process for digital applications that will bring 3D avatars to life.
Input	 Avatar with texture maps 3D rig and control methods
Demand	 Skeleton rig of a polygon mesh for animation The rig composed based on the hierarchy of bones or body segments A ready-made set of motion captured animations
Output	 Avatar with the rig

STAGE 01: DATA CAPTURE & PROCESSING

WORKSHOP

Metadata: context, searchability and usability

EV.

WORKSHOP

Optional

- Part of a set (larger population survey)
- A number of photos (when using photogrammetry)
- Editing process (sizes, origin, voxel spacing and space directional cosines)
- Scanee demographic data (gender, age, ethnicity, occupation)

Summary

Gap analysis

- Universal format for binary data
- Access to the population dataset
- Different file formats to get all layers of necessary data (.wrl, .obj, .fbx, .rig and .bip)
- Various software tools have rigging or autorigging capabilities, but interoperability can be an issue as the rig is irreversibly transformed

Requirements

- Binary data in non-proprietary format
- Uniform x-, y-, and z-axes in scan file
- Mesh templates from population
- Statistical tests for data alignment
- Data-identity confidence
- Access to metadata
- Privacy standards for different layers of data

Planning for future

Exercise

How to implement the workflow for shirt and jeans?

WORKSHOP

Stage 02

How to absorb data from all different sources

How to model clothing for the use in virtual applications and design for a tech-pack.

Modules

WORKSHOP

Digital equivalent for physical properties of the material

Goal Build a material exchange database from physical properties that reference fiber-yarn-fabric varieties.

Demand	 Fiber type, yarn structure, arrangement and twist,
	fabric structure and cover
	 Mechanical properties:
	bending, stretching, shearing, friction, straightening,
	weight, wrinkling, aerodynamic effects, inter-ply &
	intra-ply slippage and collisions

Output
 Fabric mechanical parameters in an open format to
 help developers create realistic simulations

WORKSHOP

Photo Blue jeans fabric

Visual & aesthetic part of the material

Goal	An open repository to provide aesthetic and visual data for textile technologists and 3D artists / designers.
Input	 Material exchange database about fabric compositio and behaviors Lighting Camera orientation
Demand	 Drape, along with color, luster, and texture data of fabrics, influence the aesthetics and dynamic functionality of fabrics. Texture data could include diffuse, normal, AO, roughness scale, gradation, capacity, and ID number for each polygon
Output	 Visual and aesthetic information combined with cloth encoded mechanical properties

WORKSHOP

ta

on

r

th's

Photo Digital jeans fabric

Material properties for rendering

Goal	A digital fabric that has been rendered to look 'exactly' like real cloth
Input	 Material exchange database for mechanical properties Specifications for information on drape, color and texture. Sync with printing devices and digital material for the production
Demand	 Non-linear deformations to mix stretching, shearing, and bending Non-Elastic Properties of cloth Range of colour adjustability of brightness, contrast and shade
Output	 Digital fabric for assembly and fitting

STAGE 02: DATA ABSORPTION

WORKSHOP

Photo Closeup of digital jeans

Definition of landmark to the actual pattern

Goal	Transform anthropometric data from a body scan to a garment based on a pattern-drafting method.
Input	 Avatar with or without a rig Material properties for rendering
Demand	 Landmark placement and a list of required measurements to generate automatic pattern blocks from body scan data
Output	 Pattern blocks for garment assembly

STAGE 02: DATA ABSORPTION

Photo Avatar and garments

Fit parameters

Goal Pattern blocks with different levels of ease to visualize different styling options per garment.

Input	 Material Properties Pattern blocks 3D Model Animation with rig structure
Demand	 Quantify space for ease Definition of ease per garment Fabric properties in movement
Output	 3D fitted garment on avatar body 3D animation for digital catwalk Adjusted assembly instruction Customer visualization for order confirmation

WORKSHOP

Video Floating animation of jeans fabric

Goal	Blend and combine the cloth with the pattern and
	design elements such as seams, trims and embroidery
	components.

Input	 3D avatar Rendered material Customized pattern blocks Design components
Demand	 Grain direction for fabric behavior and drape Seam assembly information 2D piece geometry and 3D space alignment Mesh integrity maintained irrespective of rig
© PHIBER, Düsseldorf, 2022	 AR, VR, and XR avatar with the fitted garment Standardized tech pack with all components and assembly instructions for PLM and ERP order and inventory management Customized tech pack for unit-1 manufacturing

STAGE 02: DATA ABSORPTION

WORKSHOP

Video Floating animation of jeans fabric

Summary

Gap analysis

- Quantify aesthetic data to accurately capture garment characteristics
- Deformations should be non-linear, with stretching, shearing and blending occuring simultaneously
- Apply non-elastic properties for garment simulation

Requirements

- Reference material exchange database for different physical properties
- Open database to store and retrieve garment mechanical and visual data
- Clear definition of what to include in the assembly instruction for a portion of standardized and customized tech pack
- Consistent vocabulary for fit and ease per garment

Planning for future

Exercise

How to implement the workflow for shirt and jeans?

WORKSHOP

Stage 03

What is needed for the manufacturing production

From tech pack to bespoke garment.

© PHIBER, Düsseldorf, 2022

WORKSHOP

Modules

		lats	Blockchain
Privacy	Metadata	File Formats	Blockchain or equivalent encrypted network
Ч Ч	2	-	or equiva

© PHIBER, Düsseldorf, 2022

WORKSHOP

PLM and ERP system in blockchain

Goal	Integrate data from tech pack into the manufacturing
	process and supply chain for the product usage conte

Input	 Customized tech pack information Blockchain and smart contract that digitally facilitates and verifies contract negotiation and performance
Demand	 Arrange panels for products and assign metadata i.e. unique identifiers Synchronize data across the supply chain The production fees could be automatically calculated and settled by smart contracts
Output	 Examine production requirements for tools / localization BOM data with a variable quantity Assembly instructions for smart tools

WORKSHOP

tion

Logistics (global design \rightarrow local manufacturing)

Goal	Manage and synchronise decision-making with supply-chain stakeholders and local production.
Input	 PLM data for skills & resources requirement BOM data with variable quantity Inventory and resource management Logistics for product route
Demand	 Computing infrastructure: traceability, security, decentralized consensus, and decentralized process execution
Output	 Data sharing and copyright protection Logistics requirements: production, distribution and servicing

WORKSHOP

Smart tools on demand

Goal	Each smart tool can act as a node in the blockchain network or own a blockchain address, and each node has a private key to encrypt data and a public key for other nodes to verify data.
Input	 Fabrication: Textile printer, dryer, cutter, assembly engine and coordinating computing environment or device Customized portion of a tech pack
Demand	 Inventory management for smart tools automated by smart contracts Cutter: How to account for manufacturing floor twea when it is an individual product Identify factors to control the cut of the textile sheet from cut control instruction and panel image
Output	 Finished unit-1 manufacturing garment Product Maintenance instructions Material quantities utilized by location

WORKSHOP

0

סך

0

Ο

/

aks

Digital Assets Management (DAM)

Goal Blockchain or equivalent network can record lead time, minimum order quantity and end-of-life management.

Input	 PLM, BOM, Smart tools
Demand	 Agree on quality and analyze materials and components to develop more sustainable end-of-life disposal plans Identify productivity factors (shape range, delivery location, manufacturing location) Identify products that contain defective components and issue target recalls
Output	 The smart contract automatically calculates a quality score based on the agreed terms with client & supplie Store workflow data: Variable quantity for BOM, PLM & ERP and Smart Tools

WORKSHOP

y olier

How to link Distribution Centre Hubs with manufacturing plants

Goal	Mapped to different location parts through smart contracts. Identify the product origin as well as to develop informed reverse logistics.
Input	 Smart contract Unit-1 manufacturing garment
Demand	 Streamlined product exchange where data cannot be lost or altered In product sharing, the utilization fees should be automatically calculated and settled by smart contract Blockchain and computing environment can be geographically dislocated from the facilities
Output	 Product route for distribution from plant to customer

WORKSHOP

e

acts

Consolidation of data to various providers to one output of finished garments

Goal	Store avatar, garment, logistic data and all
	associated metadata and workflows with
	analytics for future purchase.

Input	 3D Avatar Garment tech pack PLM/ERP/BOM Smart tools instructions/QA feedback Metadata
Demand	 Collaboration among multiple manufactures to jointly establish and maintain a functioning manufacturing platform
Output	 A full product journey through different stages on unit-1 manufacturing

Summary

Gap analysis

- How to design an appropriate chain structure for data management in PLM
- The sources and types of data collected in different stages vary significantly
- How to reach real-time data transmission and access in the scenario of high demand
- How to design suitable smart contracts for collaborative scenarios in PLM
- How to meet a balance between transparency and privacy among multiple stakeholders

Requirements

- Maintain the local manufacturing on-demand with the need of human capital investment and skills
- and guarded)
- datais at risk
- Maintain bidirectional data flow

Planning for future

• Multi-source heterogeneous data supplied by blockchain nodes must be appropriately integrated to enable rapid searches

• Security (when data should be open and transparent and when it should be maintained

• Make sure no data leakage, especially when product is copyrighted or recycled and customer

Pipeline overview

File format framework overview

Exercise

How to implement the workflow for shirt and jeans?

WORKSHOP

File format framework overview

Thank you!

Feel free to share your thoughts or contact us.

Monika Januszkiewicz

monika@straiqr.ai

Carol McDonald

carol@gneissconcept.com

Sydney Otten

sydney@straiqr.ai

All graphic design is a subject of copyright by straiqr GmbH.

